& STORAGEOS

Persistent Storage with Docker in
production - Which solution and why?

Hi everyone, thanks David for inviting me to speak about a topic that has way too
many buzzwords and confusion. So in this talk, rather than give you the One
Persistent Storage Solution To Rule Them All, I’'m going to give you a framework that
you can use to figure out what you need.

Cheryl
@oicheryl

STORAGE

A little about me, my name is Cheryl and I'm an ex-Google engineer and spent five
years writing C++ on Google Maps before joining StorageOS as product manager.

We’'ll start from the very beginning and ask

Why do | need storage?

STORAGE

why do | need storage? Stupid question right? Well yes, but applications
typically have more than one storage requirement.

Application binaries need ephemeral, performance storage.

Application data (what most people think of, like databases, message queues)
need dedicated persistent performance, for example block storage for
databases, replication for high availability etc., snapshots for point-in-time
copies and encryption.

Configuration needs to be shared and persistent, typically filesystem.

For backup, you want it to be cost efficient, so you’d be looking for
compression and deduplication, maybe back up to the cloud.

So why is this difficult with containers?

Why do | need storage?
S G ¥

App App Config Backup
binaries data

STORAGE

why do | need storage? Stupid question right? Well yes, but applications
typically have more than one storage requirement.

Application binaries need ephemeral, performance storage.

Application data for running databases, message queues need dedicated
persistent performance, for example block storage, replication for high
availability etc., snapshots and encryption.

Configuration files needs to be shared and persistent.

For backup, you want it to be cost efficient, so you’'d be looking for
compression and deduplication, maybe back up to the cloud.

You probably want more than one storage solution. So why is this difficult with
containers?

@oicheryl

Why is this tricky with
containers?

STORAGE

First of all, does anyone not know what containers are?

Applications have become loosely coupled and stateless
Designed to scale and manage failure — it is no longer economical to remediate state

So why is this difficult with containers?

@oicheryl

STORAGE

First of all, You know the cattle/pet analogy? Don’t treat your servers like pets that you have to
lovingly name and take care of, treat them like cattle that when they get ill, you take them out
back and shoot them.

In other words, you don’t want special storage pets, you want ordinary commaodity hardware or
cloud instances.

@oicheryl

Data
follows

STORAGE

Secondly, data needs to follow containers around. When nodes fail you want to reschedule
that container to another node and for data to follow it.

You want to avoid mapping containers to individual hosts - then you’ve lost your portability and
mobility.

@oicheryl

Humans
are
failable

STORAGE

Thirdly, humans are failable. Don’t rely on someone running through a playbook, they will
screw things up.

You want to manage storage through APIs and you want that integrated with Docker and
Kubernetes. So let’s take a closer look at Docker.

@oicheryl

Docker container layers

g N\

I Thin R/W Container Layer
94cba4854e82 13B — F S N S N

o -
:94cba4854e82 é 94cba4854e82 0B

-~

5672eae46cd3 o 5672eaed46cd3 1.895 KB

162ece790de4 o 162ece790de4 194.5 KB

\
1
1
1
1
1
1
1
|
1
1
1
1
/J

fleda658ch32 o fleda658ch32 188.1 MB

changed-ubuntu) ubuntu:15.04

STORAGE

Docker containers comprise a layered image and a writable ‘Container layer’. Here, the base
image is Ubuntu and the top right is the thin r/w container layer, where new or modified data is
stored.

When a container is deleted its writable layer is removed leaving just the underlying image
layers behind.

This is good because sharing layers makes images smaller and lack of state makes it easy to
move containers around.
This is bad because generally you want your app to do something useful in the real world.

So we can look at options with Docker.

@oicheryl

Docker local volumes

Container 1 Container 2

1 e
| % docker volume create --name mydata | i)
’S docker run --rm -v mydata:/data:rw alpine ash -c \] @
"echo hello world > /data/myfile” /
) - : y — var
$ sudo cat /var/lib/docker/volumes/mydata/_data/myfile L 1ib
hello world e
L volumes g o
... 1 .]
| P /myfile
lNamed__ Volume }

\
STORAGE

Docker volumes allow you to share data between host and containers through local
volumes.

Here you run docker volume create which creates a volume called mydata, mount
that into the container at /data, and write a file. When the container exits, it’s persisted
under /var/lib/docker/volumes.

On the plus side, you can’t get faster than writing to your local host. The downside is
that because the data tied to that host, it doesn’t follow you around and if that host
goes down your data is inaccessible. Plus there’s no locking so you have to be careful
with consistency, plus it's subject to the noisy neighbour problem.

To extend storage Docker has volume plugins, but first | want to

Eight principles of
Cloud Native Storage

lay out the eight principles of cloud native storage, then we’ll look at some of the
most popular ones out there and evaluate them based on these eight principles.

First off,

11

What is Cloud Native?

Horizontally scalable

Built to handle failures

Resilient and survivable

Minimal operator overhead

Decoupled from the underlying platform

STORAGE

What do | mean by cloud native?

Horizontally scalable

Built to handle failures, so no single point of failure

Resilient and survivable, in other words it should be self healing
Minimal operator overhead - it should be API-driven and automatable
Decoupled from the underlying platform and hardware.

How does that apply to storage?

12

@oicheryl

Eight principles of Cloud Native Storage

1. Platform agnostic

STORAGE

The storage platform should be able to run anywhere and not have proprietary
dependencies that lock an application to a particular platform or a cloud provider.
Additionally, it should be capable of being scaled out in a distributed topology just as
easily as it could be scaled up based on application requirements. Upgrades and
scaling of the storage platform should be implemented as a non-disruptive operation
to the running applications.

@oicheryl

Eight principles of Cloud Native Storage

1. Platform agnostic
2. APl driven

STORAGE

Storage resources and services should be easy to be provisioned, consumed, moved
and managed via an API, and provide integration with application runtime and
orchestrator platforms.

@oicheryl

Eight principles of Cloud Native Storage

—_—

Platform agnostic
API driven

3. Declarative and
composable

STORAGE

Storage resources should be declared and composed just like all other resources
required by applications and services, allowing storage resources and services to be
deployed and provisioned as part of application instantiation through orchestrators.

N

@oicheryl

Eight principles of Cloud Native Storage

—_—

Platform agnostic

API driven

3. Declarative and
composable

4. Application centric

STORAGE

Storage should be presented to and consumed by applications and not by operating
systems or hypervisors. It is no longer desirable to present storage to operating
systems instances, and then, later, have to map applications to operating system
instances to link to storage (whether on-premises or in a cloud provider, or on VMs or
bare metal) . Storage needs to be able to follow an application as it scales, grows,
and moves between platforms and clouds.

N

@oicheryl

Eight principles of Cloud Native Storage

—_—

Platform agnostic 5. Agile
API driven
3. Declarative and
composable
4. Application centric

STORAGE

The platform should be able to dynamically react to changes in the environment and
be able to move application data between locations, dynamically resize volumes for
growth, take point in time copies of data for data retention or to facilitate rapid
recovery of data, and integrate naturally into dynamic, rapidly changing application
environments.

N

@oicheryl

Eight principles of Cloud Native Storage

1. Platform agnostic 5. Agile
2. APl driven 6. Natively secure
3. Declarative and

composable

4. Application centric

STORAGE

Storage services should integrate and inline security features such as encryption and
RBAC and not depend on secondary products to secure application data.

@oicheryl

Eight principles of Cloud Native Storage

1. Platform agnostic 5. Agile

2. APl driven 6. Natively secure

3. Declarative and 7. Performant
composable

4. Application centric

STORAGE

The storage platform should be able to offer deterministic performance in complex
distributed environments and scale efficiently using a minimum of compute resources.

@oicheryl

Eight principles of Cloud Native Storage

1. Platform agnostic 5. Agile

2. APl driven 6. Natively secure

3. Declarative and /. Performant
composable 8. Consistently

4. Application centric available

STORAGE

The storage platform should manage data distribution with a predictable, proven data
model to ensure high availability, durability, consistency of application data. During
failure conditions, data recovery processes should be application independent and not
affect normal operations.

Storage landscape o

21

So that’s the eight principles of cloud native storage. Now we’ll take a look at few
different paradigms, a popular example of each and score them against those 8
principles.

Warning in advance, this is really high level but | hope | can put these into the context
of running them with Docker.

21

@oicheryl

Centralised file system: NFS

NFS Server Share: /Share/

TCP/IP
Network

NFS Client 1: mount /Share/ NFS Client 2: mount /Share
into /home/data/NfsShared/ into /mnt/nfs/NfsShared

STORAGE

Your classic NAS or network attached storage is NFS. You take one NFS server and
export the local filesystem over the network to a number of clients. Who here uses
NFS?

It doesn’t really follow any of the eight principles; it's hard to scale horizontally, it's not
integrated into Docker or Kubernetes natively, and it’s a single point of failure so
there’s no availability guarantees, although there are commercial options for failover.

First designed in 1984 - definitely not cloud native. I've scored NFS 0.

@oicheryl

Centralised file system: NFS

NFS Server Share: /Share/

TCP/IP
Network

NFS Client 1: mount /Share/ NFS Client 2: mount /Share
into /home/data/NfsShared/ into /mnt/nfs/NfsShared

STORAGE

Your classic NAS or network attached storage is NFS. You take one NFS server and
export the local filesystem over the network to a number of clients. Who here uses
NFS?

It doesn’t really follow any of the eight principles; it's hard to scale horizontally, it's not
integrated into Docker or Kubernetes natively, and it’s a single point of failure so
there’s no availability guarantees, although there are commercial options for failover.

First designed in 1984 - definitely not cloud native. I've scored NFS 0.

Storage array: Dell EMC

DR)
TEIUCH ANY
UIF THESE
WIRES

elessJunk.com

STORAGE

Next up is the classic hardware storage array like Dell EMC. This image is totally
unfair of course but it does show the complexity.

It's even less platform agnostic, since you have to buy the hardware from a specific
vendor, and typically is easier to scale up than horizontally. It's also absurdly
expensive, has long lead times, inefficient (no thin provisioning) and definitely not
application centric.

But it's optimised for deterministic performance, which is why many enterprises who
use databases still use storage arrays. Anybody using storage arrays from Dell EMC,

HPE, NetApp, Hitachi and so on?

Also not very cloud native - I've given it 2.

Storage array: Dell EMC

DR)
TEIUCH ANY
UIF THESE
WIRES

elessJunk.com

STORAGE

Next up is the classic hardware storage array like Dell EMC. This image is totally
unfair of course but it does show the complexity.

It's even less platform agnostic, since you have to buy the hardware from a specific
vendor, and typically is easier to scale up than horizontally. It's also absurdly
expensive, has long lead times, inefficient (no thin provisioning) and definitely not
application centric.

But it's optimised for deterministic performance, which is why many enterprises who
use databases still use storage arrays.

Also not very cloud native - I've given it 2.

@oicheryl

Distributed: Ceph

Object
File /O storage
Clients cluster

Metadata

. Metadata
operations

storage

Metadata
cluster

STORAGE

Jumping ahead, let’s talk about distributed storage like Ceph, which is a distributed
object store maintained by Red Hat. Distributed architectures typically trade off
performance against consistency, so you get better performance if you don’t need
strong consistency.

So how cloud native is Ceph? Distributed architectures are usually designed with
scaling in mind, and although it's not natively integrated with Docker or K8s you can
look into a project called Rook for the latter.

The big downsides of Ceph is that it's complicated to set up, and failures are
expensive. Because of the way the data is distributed across all nodes in a cluster
means that any failures need rebuilding from the whole cluster. The distributed
architecture also means that one write fans out between 13 and 40 times, which limits
the performance you can get from your cluster.

4/8 By the way, if you want to look at the numbers I'm giving, these slides are on
oicheryl.com.

@oicheryl

Distributed: Ceph

Object
File /O storage
Clients cluster

Metadata

. Metadata
operations

storage

Metadata
cluster

STORAGE

Jumping ahead, let’s talk about distributed storage like Ceph, which is a distributed
object store maintained by Red Hat. Distributed architectures typically trade off
performance against consistency, so you get better performance if you don’t need
strong consistency.

So how cloud native is Ceph? Distributed architectures are usually designed with
scaling in mind, and although it's not natively integrated with Docker or K8s you can
look into a project called Rook for the latter.

The big downsides of Ceph is that it's complicated to set up, and failures are
expensive. Because of the way the data is distributed across all nodes in a cluster
means that any failures need rebuilding from the whole cluster. The distributed
architecture also means that one write fans out between 13 and 40 times, which limits
the performance you can get from your cluster.

4/8 By the way, if you want to look at the numbers I'm giving, these slides are on
oicheryl.com.

@oicheryl

Public cloud: AWS EBS

‘ EC2 Instance

= =T oy s
EBS EBS EBS
Volume Volume Volume

—

STORAGE

Now if you’re a hipster and you want to join all the cool kids on public cloud, then EBS
is a popular option, which stands for Elastic block storage.

EBS is pretty nice, everything is scalable, highly consistent and high performance. On
the downside, you have a maximum of 40 EBS volumes you can mount per EC2
instance, which limits how many containers you can run per EC2 instance, and when
you move containers between hosts, mounting physical block devices to nodes takes
at least 45 seconds.

I'll also mention S3 which is Amazon’s eventual consistency object store and
seemingly powers half the internet. Lots of users choose a single Availability Zone
because it's cheap, but because only S3 guarantees 99.9% monthly uptime, which is
43 minutes downtime a month, outages take out half the internet too, which might be
a good thing if you're as addicted to Reddit as | am. Great for better for backups and
non-critical data, not so great for business data.

How are we doing on the cloud native front? Well, it's scalable and highly consistent
and high performance, which is great. But you're locked into Amazon as a cloud
provider, which is obviously how they like it, it gets pretty expensive which I'm sure
some of you know, and there’s privacy issues about moving sensitive data to the
cloud.

6/8

@oicheryl

Public cloud: AWS EBS

‘ EC2 Instance

= =T oy s
EBS EBS EBS
Volume Volume Volume

—

STORAGE

Now if you’re a hipster and you want to join all the cool kids on public cloud, then EBS
is a popular option, which stands for Elastic block storage.

EBS is pretty nice, everything is scalable, highly consistent and high performance. On
the downside, you have a maximum of 40 EBS instances you can mount per EC2
instance, which limits how many containers you can run per EC2 instance, and
mounting physical block devices to nodes takes at least 45 seconds, which is not
good for being able to move containers to different hosts.

I'll also mention S3 which is Amazon’s eventual consistency object store and
seemingly powers half the internet. Lots of users choose a single Availability Zone
because it's cheap, and because only S3 guarantees 99.9% monthly uptime, which is
43 minutes downtime a month, outages take out half the internet too, which might be
a good thing if you're as addicted to Reddit as | am. Great for better for backups and
non-critical data, not so great for business data.

How are we doing on the cloud native front? Well, it's scalable and highly consistent
and high performance, which is great. But you're locked into Amazon as a cloud
provider, which is obviously how they like it, it gets pretty expensive which I'm sure
some of you know, and there’s privacy issues about moving sensitive data to the
cloud.

6/8 By the way, if you want to look at the numbers I'm giving, these slides are on
oicheryl.com.

@oicheryl

Volume plugin: StorageOS

[Costainnr Runtims] A fﬁl"a
Lo
;.I' D] L@'_ fB oo I e
C_:] F'rrljl:llnn
Y] =
P = 3 doerr‘ volume create
Volumo Plugin Virusl Volme --driver storageos
s co = -)
.l:-\:u-'r:MPIm:J [Data Plass J 1’ } __Opt size=15
_— 1 o --opt storageos.feature.replicas=2
= 3 tor
T [TTENCEER [T AP volume-name
Underiyisg Forage Pladiom -

STORAGE

Volume plugins are Docker’s way of extending storage capabilities, and StorageOS is
an example of a distributed block storage platform which is deployed with Docker.

To use StorageOS you could create a docker volume with the storageos driver, set
the size is 15 GB and in this case, tell it to create two replicas of the volume on other
nodes. This gets you the high availability (if the node with the master volume goes
down you can promote one of the replicas to a new master), plus all the volumes are
accessible from any node, so if your container goes down you can spin it up
anywhere without worrying about which host it's on. But it’s not a distributed
filesystem, so the StorageOS can schedule the master volume to the same node as
the container, meaning your reads are local and fast and deteministic.

Given this was built with those principles in mind, I’'m obviously giving it an 8, but
there are some downsides; for instance, right now it assumes your cluster is
geographically close, so cross availability zone replication would be slow.

@oicheryl

Volume plugin: StorageOS

[Costainnr Runtims] A fﬁl"a
Lo
;.I' D] L@'_ fB oo I e
C_:] F'rrljl:llnn
Y] =
P = 3 doerr‘ volume create
Volumo Plugin Virusl Volme --driver storageos
s co = -)
.l:-\:u-'r:MPIm:J [Data Plass J 1’ } __Opt size=15
_— —F o --opt storageos.feature.replicas=2
= 3 tor
T [TTENCEER [T AP volume-name
Underiyisg Forage Pladiom -

STORAGE

Volume plugins are Docker’s way of extending storage capabilities, and StorageOS is
an example of a distributed block storage platform which is deployed with Docker.

To use StorageOS you could create a docker volume with the storageos driver, set
the size is 15 GB and in this case, tell it to create two replicas of the volume on other
nodes. This gets you the high availability (if the node with the master volume goes
down you can promote one of the replicas to a new master), plus all the volumes are
accessible from any node, so if your container goes down you can spin it up
anywhere without worrying about which host it's on. But because it's not a distributed
filesystem, the StorageOS scheduler can always schedule the master volume to the
same node as the container, meaning your reads are local and you get good
throughput.

Given this was built with those principles in mind, I’'m obviously giving it an 8, but
there are some downsides; for instance, right now it assumes your cluster is
geographically close, so cross availability zone replication would be slow.

@oicheryl

Plugin framework: REX-Ray

Ay
gl
8

L |
MESOS / Marathen Docker (Swarm mode) Kubernetes

1 ! v
ibStorage]:b_l

| D S T I

Dell EMC Amazon Microsoft Google OpenStack VirtualBox
Storages Waeb Services Azure Cloud

STORAGE

I mentioned Dell EMC before as a hardware vendor, they are also the developers of
REX-Ray which | want to mention because superficially it looks like another storage

plugin.

REX-Ray doesn’t provide storage itself; it's a framework which supports a number of
different storage systems. Not really a cloud native - it’s just a connector to existing
storage options. So I'm not going to give it a score.

Conclusion :

33

Of course, you can run lots of these things in combination. You could run StorageOS
on EBS, REX-Ray on top of Ceph, or NFS from VMs. There’s no one solution, and
often it’s a bit of trial and expensive (error). But hopefully those eight principles have
given you a way to evaluate what you need against what you’re currently using.

@oicheryl

K8S Storage SIG & CNCF Storage WG:
https://github.com/cncf/wg-storage

Objective is to define an industry standard “Container
Storage Interface” (CSl) that will enable storage vendors
(SP) to develop a plugin once and have it work across a
number of container orchestration (CO) systems.

STORAGE

If you're interested in learning more, standards are continuing to
improve and the K8s Storage Special Interest Group and CNCF
Storage Working Group are proposing a Container Storage
Interface to make it easier to move between storage options.

https://github.com/cncf/wg-storage

STORAGE

Thanks

Slides at oicheryl.com

35

