

What's the future of container and cloud native storage?

Cheryl Hung, Product Manager at StorageOS

Cheryl Product manager @oicheryl

Objectives

Why is container storage tricky?

How can I evaluate my storage options?

How should storage work in a microservices architecture?

Why do I need storage?

Why do I need storage?

Why do I need storage?

App binaries

App data

Config

Backup

Why is this tricky with containers?

No pet storage

Data follows

Humans are fallible

Docker container layers

Docker local volumes

```
$ docker volume create --name mydata
$ docker run --rm -v mydata:/data:rw alpine ash -c \
   "echo hello world > /data/myfile"

$ sudo cat /var/lib/docker/volumes/mydata/_data/myfile
hello world
```


What is Cloud Native?

- Horizontally scalable
- No single point of failure
- Resilient and self healing
- Minimal operator overhead
- Decoupled from the underlying platform

Jane, DevOps engineer in a bank

How do I migrate the Postgres database to containers?

1. API driven

- 1. API driven
- 2. Declarative and composable

- 1. API driven
- 2. Declarative and composable
- 3. Application centric

- 1. API driven
- 2. Declarative and composable
- 3. Application centric
- 4. Agile

- 1. API driven
- 2. Declarative and composable
- 3. Application centric
- 4. Agile

5. Performant

Block storage

Data stored in fixed-size 'blocks' in a rigid arrangement—ideal for enterprise databases

File storage

Data stored as 'files' in hierarchically nested 'folders'—ideal for active documents

Object storage

Data stored as 'objects' in scalable 'buckets'—ideal for unstructured big data, analytics and archiving

- 1. API driven
- 2. Declarative and composable
- 3. Application centric
- 4. Agile

- 5. Performant
- 6. Natively secure

- 1. API driven
- 2. Declarative and composable
- 3. Application centric
- 4. Agile

- 5. Performant
- 6. Natively secure
- 7. Consistently available

- 1. API driven
- 2. Declarative and composable
- 3. Application centric
- 4. Agile

- 5. Performant
- 6. Natively secure
- 7. Consistently available
- 8. Platform agnostic

Centralised file system: NFS

Centralised file system: NFS

0

Single point of failure
Hard to scale horizontally
No native integration

Storage array: Dell EMC

Storage array: Dell EMC

Deterministic performance
Vendor lock in
No thin provisioning
Hard to scale horizontally
Expensive and long lead times

2

Distributed: Ceph

Distributed: Ceph

4

Horizontally scalable
Hardware agnostic
Complicated to set up (see: Rook)
Writes fan out 13-40 times
Failures are expensive

Public cloud: AWS EBS

Public cloud: AWS EBS

6

Horizontally scalable
Consistent and performant
40 EBS volumes per EC2 instance
Mounting physical block devices is slow
Expensive, vendor lock in, compliance

Plugin framework: REX-Ray

Volume plugin: StorageOS

A software-defined, scale-out storage platform for running enterprise containerized applications in production

Volume plugin: StorageOS

Software defined	Platform agnostic
scale-out storage	
enterprise	
containerized applications	
in production	

Software defined	Platform agnostic
scale-out storage	Horizontally scalable
enterprise	
containerized applications	
in production	

Software defined	Platform agnostic
scale-out storage	Horizontally scalable
enterprise	Optimized for databases ie. block storage
containerized applications	
in production	

Software defined	Platform agnostic
scale-out storage	Horizontally scalable
enterprise	Optimized for databases ie. block storage
containerized applications	Docker and K8s integration
in production	

Software defined	Platform agnostic
scale-out storage	Horizontally scalable
enterprise	Optimized for databases ie. block storage
containerized applications	Docker and K8s integration
in production	Highly available

High availability with StorageOS

8

Horizontally scalable

Consistent and performant

Platform agnostic

Synchronous replication

Volume is limited to the size of one node

Conclusion

Recap

Container storage is tricky... but critical!

Eight Principles for Cloud Native Storage

How StorageOS does persistent storage and high availability

K8S Storage SIG / CNCF Storage WG

Objective is to define an industry standard "Container Storage Interface" (CSI) that will enable storage vendors to develop a plugin once and have it work across a number of container orchestration systems.

Try StorageOS my.storageos.com/main/tutorials

Quickstart <u>storageos.com/install</u>

Meetup on Wednesday - Justin Cormack from Docker <u>meetup.com/Cloud-Native-London</u>

Thanks

Slides at oicheryl.com

