< STORAGEOS

Persistent Storage with Kubernetes in Production
Which solution and why?

Kubecon + CloudNativeCon, Dec 8, 2017

Cheryl

Product manager, StorageOS
CNCF Ambassador
Slides at oicheryl.com

STORAGE

Objectives @oicheryl

*Why is state so tricky?
*How should | compare storage?
*\What storage should | use with Kubernetes?

STORAGE

Objectives @oicheryl

*Why is state so tricky?
*How should | compare storage?
*\What storage should | use with Kubernetes?

Anti-objective:

*Should | use a database/message queue/key-value
store... for my app?

STORAGE

STORAGE

Why is state so
tricky?

@oicheryl

Why do | need storage?

© StorageOS Ltd. STORAGE

Why do | need storage?

IHERE 1S NG SUCH THING AS A

STATELESS ARCHI[ECTURE
TS JUST SOMEONE ELSE'S PROBLEN

@oicheryl

First challenge: No pet storage

STORAGE

@oicheryl

Second challenge: Data needs to follow

© StorageOS Ltd. STORAGE

@oicheryl

Third challenge: Humans are fallible

© StorageOS Ltd. STORAGE

STORAGE

How should | compare
storage?

From the CNCF Landscape @oicheryl

Cloud-Native Storage

O & O DELLFMC % gé; IG
ceph DATERA ’ ms E "

HEDVIG kasten

Q % . “ . ? vmware
' ibStora ._.pr-nSDS Project
LeoFS ool Manta MINIO NetApp BpenEBS portworx Hatchway
O o0 = SN I
PURE Quobyte sncepaog SoEng ROOK SHESEE SRS | swrr

© StorageOS Ltd. STORAGE

Cloud Storage

Object Storage

Azure Blob Storage

Virtual Machine /
Block Storage

Azure Page Blobs /
Premium Storage

File Storage

Azure File Storage

Long Term Cold
Storage

Azure Cool Storage

Hybrid / Gateway
Storage

Azure Storsimple

Google

Google Cloud Storage

Persistent Disk

%,

Google Coldline
Storage

%,

Amazon Simple
Storage Service (S3)

Amazon Elastic Block
Storage (EBS)

Amazon Elastic File
System (EFS)

Amazon Glacier

AWS Storage Gateway

@oicheryl

STORAGE

Eight Principles of
Cloud Native Storage

What is Cloud Native? @oicheryl

Horizontally scalable

No single point of failure

Resilient and self healing

Minimal operator overhead

Decoupled from the underlying platform

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

Storage should be presented to and consumed by
applications, not by operating systems or
hypervisors

1 Application

centric

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

1 Application Storgge_should be present_ed to and consumed by
. applications, not by operating systems or
centric / hypervisors
2 Platform The storage platform should be able to run
agnostic / anywhere. Upgrades and scaling is non-disruptive.

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

1 Application Stor_age_should be present_ed to and consumed by
. applications, not by operating systems or
centric / hypervisors
2 Platform The storage platform should be able to run

agnostic / anywhere. Upgrades and scaling is non-disruptive.

3 Declarative/ Storage resources should be declared and.
bl composed just like all other resources required by

composabie / applications and services.

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

1 Application
centric //
2 Platform
agnostic /4
3 Declarative/
composable /4
4 API driven /

Storage should be presented to and consumed by
applications, not by operating systems or
hypervisors

The storage platform should be able to run
anywhere. Upgrades and scaling is non-disruptive.

Storage resources should be declared and
composed just like all other resources required by
applications and services.

Storage resources and services should be easy
to be provisioned, consumed, moved and
managed via an API.

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

Storage services should integrate and inline 5 Natively
security features such as encryption and RBAC. secure /

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

Storage services should integrate and inline 5 Natively
security features such as encryption and RBAC. secure /

The platform should be able to move application
data between locations, dynamically resize and 6 Agile
snapshot volumes. /

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

Storage services should integrate and inline 5 Natively
security features such as encryption and RBAC. secure /

The platform should be able to move application

data between locations, dynamically resize and 6 Agile
snapshot volumes. /
The storage platform should offer deterministic 7 Perf t
performance in complex distributed environments. errorman /

STORAGE

@oicheryl

Eight principles of Cloud Native Storage

Storage services should integrate and inline 5 Natively
security features such as encryption and RBAC. secure /

The platform should be able to move application

data between locations, dynamically resize and 6 Agile
snapshot volumes. /
The storage platform should offer deterministic 7 Perf t
performance in complex distributed environments. erforman /
The storage platform should ensure high .

availability, durability, consistency with a 8 ConS_IStently
predictable, proven data model. available /

STORAGE

STORAGE

What storage should |
use with Kubernetes?

@oicheryl

Kubernetes Storage Model: Persistent Volumes and Claims

‘u' Registers PVs in the pool @ @ @ @
9 >

Administrator Pool of Persistent Volumes

© StorageOS Ltd. STORAGE

@oicheryl

Kubernetes Storage Model: Persistent Volumes and Claims

‘u' Registers PVs in the pool @ @ @ @
9 >

Administrator Pool of Persistent Volumes

Claims a PV from the pool
@ + claim

Developer

© StorageOS Ltd. STORAGE

@oicheryl

Kubernetes Storage Model: Persistent Volumes and Claims

‘“' Registers PVs in the pool @ @ @ @
w7

Administrator Pool of Persistent Volumes

A\

Claims a PV from the pool
@ + claim

References claim in pod

Developer

© StorageOS Ltd. STORAGE

@oicheryl

Dynamic provisioning with Storage Classes

<l
‘“' Registers Storage Classes fast . m
9 >

Administrator Storage Classes

© StorageOS Ltd. STORAGE

@oicheryl

Dynamic provisioning with Storage Classes

~—
‘u' Registers Storage Classes fast . m
9 g A

Administrator Storage Classes

Claims a PV from the pool
@ + claim

Developer

© StorageOS Ltd. STORAGE

@oicheryl

Dynamic provisioning with Storage Classes

A\

<l
‘u’ Registers Storage Classes . m
9 A

Administrator Storage Classes

@ Pod

Claims a PV from the pool GEm
@ + claim

References claim in pod .
Developer = claim o

© StorageOS Ltd. STORAGE

oicheryl
Meet Jane @ y

*A DevOps engineer at a media
company

*Migrating client Wordpress websites
into Kubernetes

*\Wants to follow the cloud native
principles

STORAGE

@oicheryl

Proliferating plugins

Volume Plugin Internal Provisioner ig Example
AWSElasticBlockStore v AWS
AzureFile v Azure File
AzureDisk v Azure Disk
CephFS - -

Cinder v OpenStack Cinder
FC - -
FlexVolume & -

Flocker v o
GCEPersistentDisk v GCE
Glusterfs v Glusterfs
iSCslI S s
PhotonPersistentDisk v =
Quobyte v Quobyte
NFS = -

RBD v Ceph RBD
VsphereVolume v vSphere
PortworxVolume v Portworx Volume
ScalelO v Scalel0
Storage0S v Storage0S

© StorageOS Ltd. STORAGE

Key information @oicheryl

1. What is my use case”?
2. What are my performance requirements?
3. How should developers access storage?

4. Where is the storage deployed and managed?

STORAGE

@oicheryl

1. What is my use case?

3

App Binaries App data Config Backup

STORAGE

@oicheryl

2. What are my performance requirements?

3

App Binaries
Ephemeral

&=
_,-? &
-
App data Config
Latency, Shared
availability,

performant

.‘,?0

Backup
Cost efficient,
cloud

STORAGE

oicheryl
3. How should developers access storage? @ /

r
— 11— A
— 11 %

Block File Object
Fixed-size ‘blocks’ in ‘Files’ in ‘Objects’ in scalable
a rigid arrangement hierarchically nested ‘buckets’ — ideal for
— ideal for enterprise ‘folders’ — ideal for unstructured big

databases active documents data and archiving

STORAGE

@oicheryl

4. Where is the storage deployed and managed?

e CO supports one or more Interfaces to interact
with the Storage System

eStorage System can (A) support control-plane
interface API directly and interact directly with the
CO or can (B) interact with the CO via an API
framework layer or other Tools.

eStorage system must support the ability to
provision and consume (C) volumes through a
standard interface to be considered Interoperable

e\Workloads interact (C) with storage systems over
various data-plane methods

@oicheryl

Jane’s storage requirements

«Database location, credentials

* Postgres database for application
data

* User uploaded media

« Database and website backups

STORAGE

: : ichervl
Database location and credentials @oichery

W N

Use case? Configuration

Performance requirements? Shared across instances
Access? Kubernetes provides Secrets for sensitive data
such as passwords, and ConfigMap for arbitrary config. Both
can be accessed by the application through environment

variables
Deployed and managed? Tight integration with Kubernetes

STORAGE

User uploaded media @oicheryl

1. Use case? Shared media

Performance requirements? Large blobs of data, shared
across pods

Access? Shared filesystem

Deployed and managed?

nalll S

Cloud: Managed NFS, or object store if the app can support it
On prem: Distributed FS (but please not NFS!)

STORAGE

Database and website backup @oicheryl

Use case? Backup and archival

Performance requirements? Durability, cost, snapshots
Access? Object store

Deployed and managed?

N~

Cloud: Managed object store, long term cold storage
On prem: Object store, NAS

STORAGE

Postgres for application data @oicheryl

1. Use case? Transactional database

Performance requirements? High availability, low latency,
deterministic performance

Access? Database connector

Deployed and managed?

nalll S

Cloud: Cloud volumes (watch out for attach/detach times,
compliance) or managed db (limited offerings)

On prem: Software defined storage

STORAGE

Software-defined storage @oicheryl

App Containers = App Gmntalners

HIGHLY AVAILABLE STORAGE POOL

Container Engine @ Container Engine @ Container Engine @

© StorageOS Ltd. STORAGE

To Recap...

45

Evaluating storage
1 Application 5 Natively
centric / secure
2 Platform 6 Aglle
agnoshc
3 Declarative/ 7 Pe Hformant
composable

4 API driven £ C°"s."3te""y
/ available /

1.
2.
3.

@oicheryl

Use case?
Performance
requirements?
Access?

. Deployed and
managed?

STORAGE

CSl launched as alpha in Kubernetes 1.9 @oicheryl

Objective is to define an industry standard
“Container Storage Interface” (CSl) that will

enable storage vendors to develop a plugin once
and have it work across a number of container
orchestration systems.

STORAGE

@oicheryl

StorageOS resources

Browser-based demo
- my.storageos.com/main/tutorials

Quickstart
« storageos.com/kubernetes

We’'re hiring! London and NYC roles
 storageos.com/careers

STORAGE

http://my.storageos.com/main/tutorials
https://storageos.com/kubernetes

STORAGE

LIEULE

Slides at oicheryl.com

What is StorageOS? @oicheryl

A software-defined, scale-out storage
platform for running enterprise
containerized applications in production

STORAGE

What is StorageOS? @oicheryl

Platform Horizontally Database (ie.
agnostic scalable block)

A software-defined, scale-ou#Storage
platform for running enterprise
containerized applications in production

Docker/K8s High
Integration availability

STORAGE

StorageOS architecture @oicheryl

App Containers = App Gmntalners

HIGHLY AVAILABLE STORAGE POOL

Container Engine @ Container Engine @ Container Engine @

© StorageOS Ltd. STORAGE

StorageOS architecture @oicheryl

StorageOS is conceptually pretty simple; it's a virtualization layer on top of any
commodity or cloud storage. It's deployed as one container per node, similar to

a DaemonSet.

1. Nodes contribute local block storage to the storage pool.

2. Virtual volumes (block storage formatted with a standard filesystem) are
created using the StorageOS volume plugin.

3. Any pods can mount the virtual volumes from any node. If a pod is
rescheduled to a different node, StorageOS simply redirects reads and
writes so the pod can continue to access the storage.

STORAGE

https://hub.docker.com/r/storageos/node/
https://kubernetes.io/docs/concepts/storage/storage-classes/#storageos

StorageOS architecture @oicheryl

It's designed to scale horizontally by adding more nodes. New nodes contribute
their storage into the storage pool, or, if they don’t have storage themselves,
can access storage on other nodes.

STORAGE

@oicheryl

High availability with StorageOS

ACK

© StorageOS Ltd. STORAGE

High availability with StorageOS @oicheryl|

StorageOS uses a hybrid master/replica architecture, where replicas are
distributed across nodes.

Replication is very simple in StorageOS. Volume D is created with two replicas.
StorageOS creates the replicas (D2, D3) and schedules them to two different
nodes (N3, N5). Incoming writes to D are synchronously replicated to D2 and
D3, ie. writes are not persisted until acknowledged by both replicas.

If N1 fails, one of D2 or D3 gets promoted to master, providing instant failover
and no interruption of service. StorageOS creates and resyncs a new replica on
N2 or N4 in the background.

STORAGE

More reading

Download the technical architecture overview at
storageos.com/storageos-platform-architecture-overview.

Try out in your browser, with zero downloads or configuration:
my.storageos.com/main/tutorials

Full documentation at docs.storageos.com.

STORAGE

https://storageos.com/storageos-platform-architecture-overview
http://my.storageos.com/main/tutorials
https://docs.storageos.com/

