
Think like a storage architect, in four questions

GDG Cloud London, 18 April 2018

Cheryl Hung, Product Manager

© StorageOS Ltd.

Cheryl (@oicheryl)
Ex-Google software engineer
Product manager, StorageOS
Cloud Native London meetup

2© StorageOS Ltd.

Objectives

•Why is state so tricky?
•How does storage work with Kubernetes?
•How do I choose a storage solution?

3

@oicheryl

© StorageOS Ltd.

•Why is state so tricky?
•How does storage work with Kubernetes?
•How do I choose a storage solution?

Anti-objective:
•Should I use a database/message queue/key-value
store... for my app?

Objectives

4

@oicheryl

© StorageOS Ltd.

Audience poll

5

@oicheryl

© StorageOS Ltd.

Why is state so
tricky?

6© StorageOS Ltd.

Why do I need storage? @oicheryl

© StorageOS Ltd.

8

@oicheryl

© StorageOS Ltd.

Why do I need storage?

First challenge: No pet storage

9

@oicheryl

© StorageOS Ltd.

Second challenge: Data needs to follow

10

@oicheryl

© StorageOS Ltd.

Third challenge: Humans are fallible

11

@oicheryl

© StorageOS Ltd.

How does storage work
with Kubernetes?

12© StorageOS Ltd.

@oicherylExtremely quick intro to Kubernetes

© StorageOS Ltd.

Developer

•An open source container orchestrator platform, originally
developed by Google

•One of the fastest moving projects in open source; “The
Linux of the cloud”

•Abstracts away infrastructure in a cluster

@oicherylExtremely quick intro to Kubernetes

© StorageOS Ltd.

Developer

“Always run my application (packaged as a
container/pod) with four replicas”

@oicherylExtremely quick intro to Kubernetes

© StorageOS Ltd.

Developer

@oicherylKubernetes Storage Model: Persistent Volumes and Claims

© StorageOS Ltd.

Registers PVs in the pool

Pool of Persistent Volumes

NFS
PV

iSCSI
PV

NFS
PV

GCE
PV

Developer

Administrator

@oicherylKubernetes Storage Model: Persistent Volumes and Claims

© StorageOS Ltd.

Registers PVs in the pool

Claims a PV from the pool
claim

Pool of Persistent Volumes

NFS
PV

iSCSI
PV

NFS
PV

GCE
PV

Developer

Administrator

Developer

@oicherylKubernetes Storage Model: Persistent Volumes and Claims

© StorageOS Ltd.

claim

Registers PVs in the pool

Claims a PV from the pool

References claim in pod

claim

Pool of Persistent Volumes

NFS
PV

iSCSI
PV

NFS
PV

Pod

GCE
PV

Developer

Administrator

Developer

@oicherylDynamic provisioning with Storage Classes

© StorageOS Ltd.

Registers Storage Classes

Storage Classes

NS
PVstandardfast

Administrator

@oicherylDynamic provisioning with Storage Classes

© StorageOS Ltd.

Registers Storage Classes

claim

Storage Classes

NS
PVfast

Administrator

Developer

Claims a PV from the pool

standard

@oicherylDynamic provisioning with Storage Classes

© StorageOS Ltd.

claim

Registers Storage Classes

References claim in pod

claim

Storage Classes

NS
PV

Pod

fast

Administrator

Developer

Claims a PV from the pool

fast
PV

standard

Which storage solution
should I choose?

22© StorageOS Ltd.

Kubernetes storage plugins

© StorageOS Ltd.

@oicheryl

From the CNCF Landscape @oicheryl

© StorageOS Ltd.

@oicheryl

@oicherylMeet Jane

• A DevOps engineer at a
media company

• Migrating client Wordpress
websites into Kubernetes

• Needs to decide what
storage to use

© StorageOS Ltd.

The four questions

1. What is my use case?

2. What are my performance requirements?

3. How should developers access storage?

4. Where is the storage deployed and managed?

@oicheryl

© StorageOS Ltd.

1. What is my use case?

28

App binaries App data Config Backup

@oicheryl

© StorageOS Ltd.

2. What are my performance requirements?

29

App binaries
Ephemeral

App data
Latency,

availability,
performant

Config
Shared

Backup
Cost efficient,

cloud

@oicheryl

© StorageOS Ltd.

@oicheryl3. How should developers access storage?

© StorageOS Ltd.

Block
Fixed-size ‘blocks’ in
a rigid arrangement
– ideal for enterprise

databases

File
‘Files’ in

hierarchically nested
‘folders’ – ideal for
active documents

Object
‘Objects’ in scalable
‘buckets’ – ideal for

unstructured big
data and archiving

4. Where is the storage deployed and managed?

●CO supports one or more Interfaces to interact
with the Storage System

●Storage System can (A) support control-plane
interface API directly and interact directly with the
CO or can (B) interact with the CO via an API
framework layer or other Tools.

●Storage system must support the ability to
provision and consume (C) volumes through a
standard interface to be considered Interoperable

●Workloads interact (C) with storage systems over
various data-plane methods

Cluster Orchestrators

Control-Plane Interfaces
(CSI, DVDI, Flex, Native)

Storage SystemsFrameworks and Tools

AB

B

Workloads

C

© StorageOS Ltd.

@oicheryl

@oicherylJane’s storage requirements

• Postgres database for
application data

• Database location,
credentials

• Database and website
backups

• User uploaded media

© StorageOS Ltd.

Database location and credentials

© StorageOS Ltd.

@oicheryl

1. Use case? Configuration
2. Performance requirements? Shared across instances
3. Access? Kubernetes provides Secrets for sensitive data

such as passwords, and ConfigMap for arbitrary config. Both
can be accessed by the application through environment
variables

4. Deployed and managed? Tight integration with Kubernetes

User uploaded media

© StorageOS Ltd.

@oicheryl

1. Use case? Shared media
2. Performance requirements? Large blobs of data, shared

across pods
3. Access? Shared filesystem
4. Deployed and managed?

Cloud: Managed NFS, or object store if the app can support it
On prem: Distributed FS (not NFS)

Database and website backup

© StorageOS Ltd.

@oicheryl

1. Use case? Backup and archival
2. Performance requirements? Durability, cost, snapshots
3. Access? Object store
4. Deployed and managed?

Cloud: Managed object store (Google Cloud Storage), long term
cold storage (Google Coldline)
On prem: Object store, NAS

Postgres for application data

© StorageOS Ltd.

@oicheryl

1. Use case? Transactional database
2. Performance requirements? High availability, low latency,

deterministic performance
3. Access? Database connector
4. Deployed and managed?

Cloud: Block storage (but Google persistent disks cannot be
detached from running GCE instances) or managed db
On prem: Software defined storage

Software-defined storage @oicheryl

© StorageOS Ltd.

Thanks
Slides at oicheryl.com

© StorageOS Ltd.

What is StorageOS?

© StorageOS Ltd.

@oicheryl

What is StorageOS?

© StorageOS Ltd.

@oicheryl

Platform
agnostic

Horizontally
scalable

Database (ie.
block)

Docker/K8s
integration

High
availability

StorageOS architecture @oicheryl

© StorageOS Ltd.

StorageOS architecture

© StorageOS Ltd.

@oicheryl

StorageOS is conceptually pretty simple; it’s a virtualization layer on top of any
commodity or cloud storage. It’s deployed as one container per node, similar to
a DaemonSet.

1. Nodes contribute local block storage to the storage pool.
2. Virtual volumes (block storage formatted with a standard filesystem) are

created using the StorageOS volume plugin.
3. Any pods can mount the virtual volumes from any node. If a pod is

rescheduled to a different node, StorageOS simply redirects reads and
writes so the pod can continue to access the storage.

https://hub.docker.com/r/storageos/node/
https://kubernetes.io/docs/concepts/storage/storage-classes/#storageos

StorageOS architecture

© StorageOS Ltd.

@oicheryl

It’s designed to scale horizontally by adding more nodes. New nodes contribute
their storage into the storage pool, or, if they don’t have storage themselves,
can access storage on other nodes.

High availability with StorageOS

© StorageOS Ltd.

@oicheryl

High availability with StorageOS

© StorageOS Ltd.

@oicheryl

StorageOS uses a hybrid master/replica architecture, where replicas are
distributed across nodes.

Replication is very simple in StorageOS. Volume D is created with two replicas.
StorageOS creates the replicas (D2, D3) and schedules them to two different
nodes (N3, N5). Incoming writes to D are synchronously replicated to D2 and
D3, ie. writes are not persisted until acknowledged by both replicas.

If N1 fails, one of D2 or D3 gets promoted to master, providing instant failover
and no interruption of service. StorageOS creates and resyncs a new replica on
N2 or N4 in the background.

Browser-based demo
• my.storageos.com/main/tutorials

Quickstart
• storageos.com/kubernetes

@oicherylStorageOS resources

© StorageOS Ltd.

http://my.storageos.com/main/tutorials
https://storageos.com/kubernetes

More reading

Download the technical architecture overview at
storageos.com/storageos-platform-architecture-overview.

Try out in your browser, with zero downloads or configuration:
my.storageos.com/main/tutorials

Full documentation at docs.storageos.com.

https://storageos.com/storageos-platform-architecture-overview
http://my.storageos.com/main/tutorials
https://docs.storageos.com/

