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Objectives

•Why is state so tricky?
•How does storage work with Kubernetes?
•How do I choose a storage solution?
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•Why is state so tricky?
•How does storage work with Kubernetes?
•How do I choose a storage solution?

Anti-objective:
•Should I use a database/message queue/key-value 
store... for my app?

Objectives
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Audience poll
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Why is state so
tricky?
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Why do I need storage? @oicheryl
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Why do I need storage?



First challenge: No pet storage
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Second challenge: Data needs to follow
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Third challenge: Humans are fallible
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How does storage work 
with Kubernetes?
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@oicherylExtremely quick intro to Kubernetes
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Developer

•An open source container orchestrator platform, originally 
developed by Google

•One of the fastest moving projects in open source;  “The 
Linux of the cloud”

•Abstracts away infrastructure in a cluster



@oicherylExtremely quick intro to Kubernetes

© StorageOS Ltd.

Developer

“Always run my application (packaged as a 
container/pod) with four replicas”



@oicherylExtremely quick intro to Kubernetes
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@oicherylKubernetes Storage Model: Persistent Volumes and Claims
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@oicherylKubernetes Storage Model: Persistent Volumes and Claims
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@oicherylKubernetes Storage Model: Persistent Volumes and Claims
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claim

Registers PVs in the pool
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@oicherylDynamic provisioning with Storage Classes
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@oicherylDynamic provisioning with Storage Classes
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Registers Storage Classes

References claim in pod
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Which storage solution 
should I choose?
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Kubernetes storage plugins
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From the CNCF Landscape @oicheryl
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@oicherylMeet Jane

• A DevOps engineer at a 
media company

• Migrating client Wordpress 
websites into Kubernetes

• Needs to decide what 
storage to use
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The four questions

1. What is my use case?

2. What are my performance requirements?

3. How should developers access storage?

4. Where is the storage deployed and managed?

@oicheryl
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1. What is my use case?
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App binaries App data Config Backup

@oicheryl

© StorageOS Ltd.



2. What are my performance requirements?
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@oicheryl3. How should developers access storage?
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Block
Fixed-size ‘blocks’ in 
a rigid arrangement 
– ideal for enterprise 

databases

File
‘Files’ in 

hierarchically nested 
‘folders’ – ideal for 
active documents

Object
‘Objects’ in scalable 
‘buckets’ – ideal for 

unstructured big 
data and archiving



4. Where is the storage deployed and managed?

●CO supports one or more Interfaces to interact 
with the Storage System

●Storage System can (A) support control-plane 
interface API directly and interact directly with the 
CO or can (B) interact with the CO via an API 
framework layer or other Tools.

●Storage system must support the ability to 
provision and consume (C) volumes through a 
standard interface to be considered Interoperable

●Workloads interact (C) with storage systems over 
various data-plane methods

Cluster Orchestrators

Control-Plane Interfaces
(CSI, DVDI, Flex, Native) 

Storage SystemsFrameworks and Tools

AB

B

Workloads

C
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@oicherylJane’s storage requirements

• Postgres database for 
application data

• Database location, 
credentials

• Database and website 
backups

• User uploaded media
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Database location and credentials
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1. Use case? Configuration
2. Performance requirements? Shared across instances
3. Access? Kubernetes provides Secrets for sensitive data 

such as passwords, and ConfigMap for arbitrary config. Both 
can be accessed by the application through environment 
variables

4. Deployed and managed? Tight integration with Kubernetes



User uploaded media
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1. Use case? Shared media
2. Performance requirements? Large blobs of data, shared 

across pods
3. Access? Shared filesystem
4. Deployed and managed?

Cloud: Managed NFS, or object store if the app can support it
On prem: Distributed FS (not NFS)



Database and website backup
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1. Use case? Backup and archival
2. Performance requirements? Durability, cost, snapshots
3. Access? Object store
4. Deployed and managed?

Cloud: Managed object store (Google Cloud Storage), long term 
cold storage (Google Coldline)
On prem: Object store, NAS



Postgres for application data
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1. Use case? Transactional database
2. Performance requirements? High availability, low latency, 

deterministic performance
3. Access? Database connector
4. Deployed and managed?

Cloud: Block storage (but Google persistent disks cannot be 
detached from running GCE instances) or managed db
On prem: Software defined storage



Software-defined storage @oicheryl
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Thanks
Slides at oicheryl.com
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What is StorageOS?
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What is StorageOS?
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Platform 
agnostic

Horizontally 
scalable

Database (ie. 
block)

Docker/K8s 
integration

High 
availability



StorageOS architecture @oicheryl
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StorageOS architecture
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StorageOS is conceptually pretty simple; it’s a virtualization layer on top of any 
commodity or cloud storage. It’s deployed as one container per node, similar to 
a DaemonSet.

1. Nodes contribute local block storage to the storage pool.
2. Virtual volumes (block storage formatted with a standard filesystem) are 

created using the StorageOS volume plugin.
3. Any pods can mount the virtual volumes from any node. If a pod is 

rescheduled to a different node, StorageOS simply redirects reads and 
writes so the pod can continue to access the storage.

https://hub.docker.com/r/storageos/node/
https://kubernetes.io/docs/concepts/storage/storage-classes/#storageos


StorageOS architecture
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It’s designed to scale horizontally by adding more nodes. New nodes contribute 
their storage into the storage pool, or, if they don’t have storage themselves, 
can access storage on other nodes.



High availability with StorageOS 
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High availability with StorageOS 
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StorageOS uses a hybrid master/replica architecture, where replicas are 
distributed across nodes.

Replication is very simple in StorageOS. Volume D is created with two replicas. 
StorageOS creates the replicas (D2, D3) and schedules them to two different 
nodes (N3, N5). Incoming writes to D are synchronously replicated to D2 and 
D3, ie. writes are not persisted until acknowledged by both replicas.

If N1 fails, one of D2 or D3 gets promoted to master, providing instant failover 
and no interruption of service. StorageOS creates and resyncs a new replica on 
N2 or N4 in the background.



Browser-based demo
• my.storageos.com/main/tutorials

Quickstart
• storageos.com/kubernetes

@oicherylStorageOS resources

© StorageOS Ltd.

http://my.storageos.com/main/tutorials
https://storageos.com/kubernetes


More reading

Download the technical architecture overview at 
storageos.com/storageos-platform-architecture-overview.

Try out in your browser, with zero downloads or configuration: 
my.storageos.com/main/tutorials

Full documentation at docs.storageos.com.

https://storageos.com/storageos-platform-architecture-overview
http://my.storageos.com/main/tutorials
https://docs.storageos.com/

